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Abstract

Despite their outstanding performance on i.i.d. training and testing set, exist-
ing machine learning models may suffer undesired performance drop on out-
of-domain data. In this paper, we propose novel approaches addressing this
challenge by disentangling the latent features to be domain-specific and domain-
invariant by swapping. Experiments on the Digits-DG dataset demonstrate our
methods’ superiority over all the baseline methods, including non-neural network
methods. This work has practical applications in real world situations where
data from unseen domains is commonly encountered. Our code is available at
https://github.com/CapFreddy/CSC2515-Final-Project

1 Introduction

Over the past few years, Deep Neural Networks (DNNs) achieved extraordinary results on various
tasks. Their success always rely on the i.i.d. (independent and identically distributed) assumption,
which requires training and testing data to be drawn from the same distribution. However, such
assumption can be easily violated when dealing with new domain data, and severe performance
degradation have been observed in many studies [1], which is a critical issue to apply DNNs in
real-world scenarios. Suppose we have an autonomous driving system which is trained with data
in sunny days, would it be acceptable if our system cannot drive safely when weather is foggy or
snowy? To tackle this problem, researches have been done in Domain Generalization (DG) [2].

In DG tasks, we divide our data to source domains and target domains. During training, we can only
use the data in source domains and leave target domains unseen. This is a more challenging setting
compared with Domain Adaptation, which can leverage unlabeled target domain data as part of the
training set [3]. Such restrict setting helps us better evaluate how our trained model will behave when
dealing with unseen domains in real-world environment.

*Equal contribution. Listing order is random. Linfeng raise the general idea of disentangling via swapping
latent variables in the VAE framework. After consultation with the TAs, we decided to limit our scope to more
simple network architectures. Kejia formalized our idea into our three proposed methods and implemented the
initial version of the models. Linfeng refined based on which for faster experimentation. Huakun conducted
thorough experimentation for the baselines. Every team member participated in the report writing and correction,
as well as experimentation w.r.t. our proposed methods.
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Since the key of DG is to learn a robust model against all possible domain shifts, we should let our
model only pay attention to domain-invariant features and make prediction based on them. One may
suggest an intuitive solution to DG by enlarging the source domains. For example, not only use sunny
images, but also collect foggy and snowy images to train our autonomous driving system. This is
effective, because it will be easier for the model to learn such generalizable features, but not very
practical. On the one hand, it’s very costly to collect new data; on the other hand, we can never collect
all the data and enlarge the source data to cover all possible domains. Thus, this cannot be a general
approach to our problem.

In this paper, we proposed 3 methods focusing on disentangling the latent domain-specific and
domain-invariant features within existing source domains. Rather than implicitly make the model
focusing on domain-invariant features with enlarged source data, we explicitly explore the original
source domains and try to learn such features directly. We evaluated our proposed methods with
the simplest DNNs architecture, namely multi-layer perceptrons, and compared our methods with
different baseline machine learning models. Experiments demonstrate the effectiveness of our
methods.

2 Related Work

Domain Generalization (DG) aims to learn a model with enough ability to generalize to arbitrary
unseen target domains from existing source domains. In this section, we’ll first discuss the related
work using disentangled representations which are closely related with our proposed methods. We
will also briefly review other related works which can be roughly categorized to methods based on
domain alignment and methods based on data augmentation.

Disentangle Representations: The idea of disentangling representations is to separate features into
different components and relies on the domain-invariant parts to help improve model’s generalization
ability. One way to do this is to use generative models. Ilse et al. utilized VAE to formulate
domain, class and other feature respectively[4]. Nam et al. extracted content and style information
separately and applied AdaIN to perform both style randomization and content randomization between
training data[5]. The style randomization encouraged the classifier to predict the class based on
content information, while adversarial training is applied with content randomization to force style
information to be class-agnostic.

The main difference between our approach and previous work is that we use a simple swap operation to
separate our desired features, while existing methods always require reconstruction loss or adversarial
training.

Domain Alignment: The motivation of domain alignment is straight forward - since we need to
improve our model’s generalization ability, why not let our model learn from the invariant feature
among source domains? In order to obtain such domain-invariant features, methods based on domain
alignment try to minimize the distance between source domains with different metrics. Wang et
al. proposed to align domain-agnostic posteriors within each class via the KL divergence[6]. Li et
al. adopt autoencoder architecture and minimized Maximum Mean Discrepancy distance on latent
features between source domains[7]. Instead of explicitly minimizing distance metrics, one can also
use adversarial training to make latent features to be indistinguishable among all source domains[3].
Though this is originally proposed to deal with Domain Adaptation tasks, we adopt this method in
our experiment setting and reported its results for comparison.

Data Augmentation: As a general approach to reduce over-fitting, data augmentation has been
widely used in DG tasks. One can simply apply some traditional image transformation algorithms,
like rotation, random flip and color changing, to improve model’s generalization ability[8]. Inspired
by adversarial attack, Shiv Shankar et al. perturbed the training sample with the gradient from a
domain classifier in order to make its domain being different while preserving its class label[9]. Other
methods try to augment source domain data with different styles based on the observation that domain
shifts always results in different styles of image rather than content. Xu et al. proposed to augment
source domain data in Fourier domain by swapping or mixing up amplitude between images as the
amplitude contains rich style information[10].

Note that one of our proposed methods swaps domain features in latent space and can be considered
as implicit data augmentation.
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Figure 1: Overview of our proposed methods. The upper left, bottom, and upper right part illustrates
DisEntFINAL, DisEntLATENT, and DisEntLATENT-FINETUNE respectively. The items with green color
denote the domain-invariant part, and the ones with orange color denote the domain-specific part. In
DisEntFINAL, we simply use two classifiers which takes different part of the last latent feature as input.
In DisEntLATENT, we swap the latent feature between training samples to better disentangle feature
representations. In DisEntLATENT-FINETUNE, we build another class classifier based on pre-trained
DisEntLATENT model.

3 Method

Problem Definition: Given a set of source domains Ds = {D1,D2, ...,DS} with the k-th domain
consists of NK labeled data {xk

i , y
k
i , d

k
i }

NK
i=1, where xk

i , y
k
i and dki denote input data, class label and

domain label respectively. The goal of DG is to learn a model fθ on the source domains which can
generalize well to arbitrary unseen target domain Dt.

Model Architecture: In this work, we adopt a 3-hidden-layer fully-connected neural network. If we
ignore the domain features in the network, the number of hidden units in each layer are fixed to be
512, 128, and 64 respectively. With this backbone network, we can perform fair comparison between
each proposed methods and search for best hyperparameter combination.

In the following subsections, we will illustrate how our methods work and why we use them.

3.1 DisEntFINAL: Disentangling the Final Representations

The motivation of our work is to disentangle latent representations into domain-specific and domain-
invariant features. Suppose we can somehow separate these features with our neural network, it’s
obvious that we can make good prediction of class label only based on domain-invariant features and
domain label based on domain-specific features. Following this idea, we formulate our first method
DisEntFINAL as shown in the upper left in Fig. 1.

To be more specific, we use two classifiers here with different inputs. The class classifier only takes
domain-invariant features as input and its dimension is fixed to be 64, while the domain-classifier
only takes domain-specific features as input and its dimension is a hyperparameter. The loss function
is formulated as standard cross-entropy:
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Lcls = −yki log(σ(fθ,cls(x
k
i ))), (1)

Ldom = −dki log(σ(fθ,dom(xk
i ))), (2)

L = Lcls + αLdom, (3)

Where σ denotes softmax function and α is hyperparameter. This loss function can separate the latent
representation to become class-related and domain-related, but we cannot guarantee the class-related
feature to be domain-invariant. Though this method doesn’t fully fulfill our motivation, it’s still worth
evaluating it as we can think the domain classifier here to be a regularizer and may help our model to
generalize to other unseen domains.

3.2 DisEntLATENT: Disentangling Latent Representations via Feature Swapping

To better disentangle domain-specific and domain-invariant features, we need to add more constraints
and this leads to our second method. As illustrated at the bottom of Fig. 1, we propose to implement
such constraint by swapping part of the latent features between training data.

To be more specific, suppose we have two training samples denoted by {x1, y1, d1} and {x2, y2, d2}.
By passing x1, x2 through the first and second hidden layer, we can get the corresponding latent
representations f1, f2. We can now generate two other representations f

′

1, f
′

2 by swapping part of the
features between f1 and f2. Both generated features and original features are then passed into the
third hidden layer and two classifiers. As for the generated features, we also swap the ground truth
domain label of them, which means we need to eventually predict {y1, d2} from f

′

1 and {y2, d1}
from f

′

2. We use the same loss function with DisEntFINAL as defined in Eq. 3.

After training, we believe the swapped part of the feature will become domain-specific and the
unswapped part will be domain-invariant. To better understand why this will work, let’s think about
the following situation: Suppose the swapped part still contains class-related information and the
unswapped part contains domain-related information, then we know f

′

1 contains information about
both y1 and y2, d1 and d2. In this case, it will be a hard problem for our model to predict only
{y1, d2} from f

′

1. In order to make better prediction, our model will learn to reduce the information
related to y2 and d1. Eventually, the swapped part can only contain very less class-related information
and the unswapped part can only contain very less domain-related information.

Note that it’s also very important to pass the swapped feature through another hidden layer to mix
the disentangled features. If we don’t do so, there could be a shortcut for the two classifiers to make
prediction only based on unswapped and swapped part respectively. In this case, DisEntLATENT will
become similar to DisEntFINAL, and we cannot force our model to separate the features.

3.3 DisEntLATENT-FINETUNE: Finetuning Disentangled Latents

As demonstrated in the former section, we can obtain domain-specific and domain-invariant features
with DisEntLATENT. However, the class classifier in DisEntLATENT doesn’t make good use of this
fact and makes prediction based on the mixed features. Therefore, we propose our third method
DisEntLATENT-FINETUNE.

As shown in the upper right in Fig. 1, we build another class classifier which only takes domain-
invariant features as input. In order to obtain such feature, we use the pre-trained DisEntLATENT
model. This method best aligns with our motivation, as we successfully disentangle the latent features
and build the classifier only based on domain-invariant ones. In this method, it doesn’t involve any
training with domain labels and the loss function is just the standard cross-entropy defined in Eq. 1.

4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluate our proposed methods on Digits-DG [11], a collection of four digit datasets including
MNIST [12], MNIST-M [13], SVHN [14] and SYN [13]. Each of the four datasets is treated as a
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Figure 2: Example images from Digits-DG.

separate domain (see Fig. 2) which contains 600 images for each class. We use the same data splits
as suggested by [11] where each dataset is split into training and validation sets by a ratio of 4:1.
At each time, we combine the training and validation sets of three domains for training and model
selection, respectively, and leave one domain out as the target domain for testing, where we test on all
examples in the two splits. We report the classification accuracy on each target domain as well as the
one averaged across four domains. For all of our methods as well as baselines, we train them using
three different seeds for model initialization and data-shuffling, and report the mean and standard
deviation of the independent runs.

4.2 Baseline Methods

We compare our proposed methods with three groups of baselines. The first group consists of
non-neural methods including Support Vector Machine (SVM), Random Forest (RF) and AdaBoost,
which are representative in the family of kernel machines, bagging, and boosting, respectively. To
the best of our knowledge, these methods were never compared to in existing literature of domain
generalization. We fill this gap by benchmarking their performance under this typical DG setting.
To this end, we conduct thorough hyperparameter tuning for each of them by grid-searching over
a large hyperparameter space. The second group is the MLP with three hidden layers which is
used as the backbone of our proposed methods. For a fair comparison, we train this vanilla MLP
under the same hyperparameter settings except that no DG-targeting techniques is applied. For
the third group, we adapt the domain-adversarial training framework [3] (DANN) to our backbone
architecture, which applies a domain classifier to the full features produced by the MLP. The domain
classification head generates reversed gradients to update the feature extractor in order to remove
domain-relevant information from the extracted features. While our methods share the same ultimate
goal of classifying based on domain-removed features, our approach is from a different perspective.

Since we limit our scope to this rather simple fully-connected network, we do not compare with
methods that rely on more sophisticated network architectures as well as complex training schemes.

4.3 Implementations and Hyperparameter Settings

Images are resized to 32× 32 and flattened to one-dimensional. The backbone feature extractor is
a MLP with three hidden layers of size 512, 128 and 64. We use single fully-connected layers for
both object and domain classification. For the three of our methods, we increase the units in the
layer where disentanglement happens and treat the activation of the added units as domain features,
while the activation of the original units are treated as object features. For method 2 and 3, domain
feature swapping is implemented batch-wise by randomly permutating domain features across the
batch and concatenating them with the original object features. The networks are trained from scratch
using Adam [15] with an initial learning rate of 0.01, batch size of 256 and weight decay of 1e-3
for 200 epochs. The learning rate is decreased by 0.1 for every 50 steps. For the fine-tuning phase
of method 3, we apply a small learning rate of 1e-5 to update the feature extractor, which performs
slightly better than freezing the pretrained feature extractor. We adopt an early stopping scheme that
the checkpoint with the best validation accuracy is used for testing.

The only two hyperparameters that we search for are the dimension of domain features and the α in
Eq. 3 that trades off the two losses. To limit our search space, we first fix α to be 0.5 and search for
the optimum domain dimensionality. Then we fix the domain dimensionality and search for the best
α. All of three methods reach the best performance when domain dimensionality is 64 and α is 0.1.
As shown in Fig. 3, all methods converge well under this hyperparameter setting.
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(a) Method 1 (b) Method 2 (c) Method 3 - Finetune

Figure 3: Training curves of the proposed methods (MNIST-M as target domain).

Method MINST MINIST_M SVHN SYN Avg.
AdaBoost 67.10± 1.2 25.09± .3 22.81± 1.1 34.17± 1.9 37.29
RF 79.06± .7 25.74± .3 32.08± .5 42.09± .3 44.74
SVM 73.92± .0 29.90± .0 32.17± .0 55.37± .0 47.84
Vanilla MLP 89.58± .6 52.62± .5 52.71± .4 68.36± .7 65.81
DANN 88.79± .3 51.33± .5 52.07± .5 69.61 ± .6 65.45
DisEntFINAL 90.12± .3 53.23± .3 53.80 ± .1 68.32± 1.1 66.37
DisEntLATENT 90.62 ± .4 53.67± .9 52.74± .7 69.06± .6 66.52
DisEntLATENT-FINETUNE 89.73± .4 53.73 ± .1 53.50± .3 69.35± .2 66.58

Table 1: Classification Accuracy on Digits-DG

4.4 Main Results

Experiment results are shown in Table 1. We identified that a large gap exists between neural and
non-neural methods. We find that the "traditional" method suffer severe underfitting (SVM) or
overfitting (RF and AdaBoost) which may be due to their limited model capacity. It is unexpected
that DANN performs worse than vanilla MLP. We suppose the reasons are two-fold: First, the DANN
was proposed to deal with DA tasks and may not work well under DG settings. Second, due the
adversarial training, the results with different hyperparameters are quite unstable and we may not
have found the best hyperparameters. However, both of these reasons suggest that applying DANN to
DG problem can be difficult.

All of our proposed methods perform better than baseline methods. DisEntFINAL has the least
constraint separating domain-specific and domain-invariant features and has the lowest classifi-
cation accuracy within three proposed methods. DisEntLATENT performs better than DisEntFINAL
as we force the network to disentangle the latent representations by swapping them. In addition,
DisEntLATENT-FINETUNE achieves even better results while only rely on domain-invariant features to
make predictions. This improvement demonstrates the effectiveness of our methods.

4.5 Visualization of Learned Features

To better understand the effectiveness of our proposed methods, we visualize the disentangled
representations learned by DisEntFINAL and DisEntLATENT via t-SNE [16]. As shown in Fig. 4, in
terms of the domain label, it can be identified that some clusters of object representations are mixed
together while domain representations are well-separated, which indicates that our methods are able
to separate domain-relevant features, whether by directly disentangling the final layer or by swapping
latent features.

5 Conclusions and Future Work

In this paper, we propose three methods to disentangle object and domain features for better domain
generalization. Disentanglement is achieved via directly learning separate object and domain repre-
sentations via different classification heads, as well as enforcing latent disentanglement via feature
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(a) DisEntFINAL - Object (b) DisEntFINAL - Domain

(c) DisEntLATENT - Object (d) DisEntLATENT - Domain

Figure 4: t-SNE visualization of learned features (MNIST-M as target domain).

swapping. We demonstrate the effectiveness of our proposed methods via quantitative analysis based
on the Digits-DG dataset and showcase the disentangle effect via visualization techniques.

Although mixed clusters can be identified from Fig. 4, we still find the disentanglement somehow
unsatisfactory since there still exists some clear boundaries between different domains. This could be
due to the lack of domain-invariant constraints as in domain adversarial training [3]. Future work
could look at incorporating such constraints into the framework as well as examining the performance
based on more complex neural architectures with certain domain-specific priors.
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